College of Engineering Department of Civil Engineering

CE 569 Finite Element Method in Structural Analysis

Credit and Contact hours	3 / 3 (Lectures), 0 (Tutorials), 0 (Laboratory)		
Required, or Elective	Elective		
Course Description	Introduction to Finite Element Method; Direct formulation of finite element in one dimension; stiffness method for truss, beam and frame analysis; Weighted residuals; Energy and Variational principles in elasticity; Rayleigh-Ritz method; Shape functions and finite element formulation; Lagrangian and Serendipity elements; Isoparametric elements and Numerical integrations; Finite Element Implementation to 2-D Plane Stress/Plane Strain and Axisymmetric problems.		
Prerequisites or Co- requisites	CE 564 Advanced Solid Mechanics		
Course Learning Outcomes	Students completing this course successfully will be able to:		
	Course Learning Outcomes (CLOs)	Related Student	
	CLO1. Recognize the principles of the direct stiffness method for truss and frame structures. K1	SO1	
	CLO2. Recognize the Weighted Residuals; Energy Principles and Rayleigh-Ritz methods to solve simple boundary value problems. K1	SO1	
	CLO3. Recognize the fundamentals of domain discretization, interpolation functions, and the finite element formulation in one, two- and three-dimensional domains. K1	SO1	
	CLO4. Apply the direct stiffness method to truss and frame analysis. S1	SO2	
	CLO5. Use approximate Weighted Residual and Rayleigh-Ritz methods to solve simple plane stress/plane strain boundary value problems. S1	SO2	
	CLO6. Evaluate some real structural problems and predict their behavior using MATLAB/Octave. S1	SO2	
	CLO7. Manage work plans and assigned tasks in individual coursework and assignments, group projects, and research work. V2	SO7	
Student Outcomes related to this Course	SO 1 Recognize advanced engineering knowledge, concepts, and techniques to identify, interpret, and analyze complex and real-life engineering problems.		
	SO 2 Provide solutions for complex and real-life engineering problems through critical thinking and the use of modern engineering tools, and identify their impact on social, global, cultural, environmental, safety, and economic factors.		
	SO 7 Effectively manage, individually or in groups, specialized tasks and activities in coursework, projects, assignments, and research work with a high level of autonomy and responsibility.		

Topics Covered	List of Topics	Related CLOs	
	1. Basic Concept of Finite Element Method	CLO1, CLO2, CLO3	
	2. Direct formulation of finite element – Stiffness Method	CLO4	
	3. Weighted Residual and Rayleigh-Ritz Methods	CLO2, CLO5	
	4. Virtual Work and Energy Principles	CLO2, CLO3, CLO5	
	5. Shape Functions and Finite Element formulation - One-D FE formulation	CLO3	
	6. 2—D and 3-D Lagrangian and Serendipity Elements	CLO3, CLO6	
	7. Isoparametric Elements and Numerical Integration	CLO3, CLO5, CLO6	
	8. Computer implementation	CLO6	
	9. A workshop on related topics	CLO6, CLO7	
Textbook(s)			
and Other	•Logan, D.L., 2016. A first course in the finite element method. Cengage		
Required	Learning.		
Material			
Grading System	Assignments and HWs	10%	
	Lecture Attendance	—	
	Written midterm exam	40%	
	Computer Assignment	10%	
	Final exam	40%	
Instructors	Prof. Yassir M. Abbas; Office 2A65; Email: <u>yabbas@ksu.edu.sa</u>	l	
Date of Review	March 2025		